
EQUILIBRIUM CRACKS FORMED DURING BRITTLE 
FRACTURE RECTILLNEAR CRACKS IN 

PLANE PLATES 

(0 RAVNOVESNYKR TRESACRINAKR OBRAZIJIUSHCIIKHSIA PRI 

KRRUPKOM RAZRUSHENII - PRIAMOLINEINYE TRESRCHXNY 

V PLOSKYKR PLASTINKAKR) 

PMM Vot.23, No.4, 1959, pp. 706-721 

G. I. RARENBLATT 

(Moscow) 

(Received 18 March 1959) 

The basic concepts of the theory of equilibrium cracks, i.e. cracks the 

dimensions of which do not change at a given load, have been discussed 

in [l]. In order to avoid numerous references and repetitions in the 

present paper, we reproduce here briefly the fundamental initial assumptions 

of [ 11. The crack is subdivided into two regions: the inner region, in 

which the distance between the opposite edges of the crack is considerable 

and their interaction is negligibly small and the end region, in which 

the opposite edges of the crack are closely adjacent to each other and 

where cohesive forces of very considerable amount are acting. The entire 

concept is based upon the following three hypotheses: 

1. The longitudinal dimensions of the end region ore small as corpared 

with those of the entire crack. 

2. The distribution of the displacenents of the surface points of tke 

end region of the crack does not depend on the acting loads and is always 

the saue for the given rateriaf under given conditions. The cohesive 

forces, which attract the opposite edges of the crack toward each other, 

depend only on the distribution of the displacements in the end region; 

therefore, the hypothesis just stated involves independence of these 

forces from the loads. 

3. The opposite edges of the crack are snoothly connected with each 

other at its ends, or, what is the sage, the stress is finite at the ends 

of the crack. This hypothesis was originally advanced by Khristianovich 

[2] in a study of the problems of formation and development of cracks in 
rock strata. The only compressing factor in these problems is the rock 

pressure, the pressure produced by the weight of the upper rock layers; 
the cohesive forces were not discussed and not taken into account. 

1009 



1010 G. I. Barenbla tt 

The model suggested above was applied in [ 11 to the solution of the 
problem of axisymmetrical equilibrium cracks. In the present paper, the 

sameideas are being applied to the solution of the problem of rectilinear 

equilibrium cracks in plane plates. We will find that in the case now to 

be considered the dimensions of the crack are again determined by the 

applied loads and by the new universal characteristic coefficient of the 

material, the cohesion modulus K, introduced in [ 11. The cohesive forces 

are of essential influence only on the dimensions of the cracks and on 

the distribution of the displacements of the opposite edges of thecrack 

in the vicinity of its ends. 

1. Condition of smooth connection and of finite stresses 
at the ends of a isolated slit [cut1 in the infinite plane. 

We have to start with the following problem. Consider a slit from point 

x = a to point n = b along the x-axis in the infinite plane (Fig. 1). 

Normal stresses - g(x) and opposite direction are applied to points of 

opposite edges having the same coordinate x. Let us determine the condi- 

tions which must be fulfilled, if the stresses at the ends of the slit 

are to be finite, or, what is the same, if the opposite edges of the de- 

formad surface of the slit are to be smoothly connected with each other 

at the ends of the slit. 

We replace the coordinates n, y by the coordinates 

5’ = 2 - l/r (a + b), Y’ = Y 

so that the slit is symnetrical with respect to the origin of the new 

system of coordinates. For the solution of the problem under consideration 
we use the method of Ikskhelishvili [ 41 . We recall the fundamental rela- 

tions of this method: 

X,+Yv=4 RejcD(C)} (1.1) 

Y, -xx,+2ix,= 2 ($@qC)f Y(C)) 

(1.2) 

where Xx, Y , ,X are the components of the 

stress tens&, &ile the function 

Fig. 1. 

ZI = 2’ + iy' = o(C) = '/$(C + C-l), 1 -= ‘ia (b - a) (1.3) 

yields the mapping of the exterior of the slit on the exterior of the 
unit circle on the parametric c-plane. The functions Q(L) and V(c) 
are determined by the relations 

with 
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(1.5) 

?he integrals are to be taken along the periphery of the unit circle, 

while 
X'(Q) 

f = j =; - \ g (5’) ds’ 

where rO' is a certain fixed point and x'(u) is a variable point. C’ &ince 

the function f is real, the fonulas (1.3) to (1.5) show that the condi- 

tion 

is fulfilled along the 

continuation. Thus, by 

along its continuation 

Consequently 

entire x-axis, i.e. along the entire slit and its 

virtue of (1.2) we have along the slit itself and 

x* = YY, 

x, = Y, = 

'lhus we find that the necessary and sufficient condition for obtain- 

ing finite stresses at the ends of the slit is fulfilled, if @(+l)and 

x,=0 

2 Re 9 (C)> 

(1.6) 

(1.7) 

(1.8) 

@(-1) are finite, since the points 5 = + 1 and [ = - 1 correspond to the 

ends of the slit. 

'lhe simplest way of determining #J(<) is as follows. If concentrated 

splitting forces P of equal amount and opposite direction are applied to 
the opposite edges of the slit at the point n' = x0' of the slit surface, 

then by virtue of (1.5) we can obtain 

,ix 
‘P 6) = & ln :Ie_ii 7 h =- arccos F (1.9) 

Considering that, with x' = 1 cos h along the slit itself, the force- 

g(x')dx' = g(2 cos A) I sin X dX is acting on the elgnent dx’ of the slit, 

we find by sumnation of solutions (1.9) the following formula for the 

function 4(c) in the case of the general problem under study 

(1.10) 

whence 
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To make the stresses at the-end n' = 1 of the slit finite, or, what is 

the same, to make Q(l) finite, it is necessary that N(1) should vanish, 

i.e. 
YE ._ 

s g (Ices hfsin2h dX 

1 = - cos A 
0 

0 

(1.W. 

Passing to the variable x' = I cos X and to the variable n' = x t 

l/Ztb + a), we find 

0 -1 -1 0 

Therefore, condition (1.12) for obtaining finite stresses at the right- 

hand end r = b of the slit assumes the form 

1 I/ g (2) Fxdx=O (1.23) 

a 

Condition (1.13) for finite stresses can be obtained also imnediately 

with the aid of the known method developed by Sedov [ 51 in the theory of 

thin wings. 

In exactly the same way we derive the eondition for obtaining finite 

stresses at the left-hand end x = a of the slit in the form 

b-X 
xyadx=O (1.14) 

It is not difficult to show that these conditions are not only necessary, 

but also sufficient for obtaining finite stresses at the ends of the slit. 

We are now going to show that condition (1.12) and, consequently, condi- 

tion (1.13), ensure smooth connection of the opposite edges on the slit 

at the end x = b. Indeed, in accordance with the formula of Kolosov- 

~s~el~shvili t 43 

(1.15) 

where LI and v are the components of displacement in the x and y directions, 
respectively, while p is the shear modulus, u Poisson's ratio and K= & 3v. 

From (l.lS), together with (1.3), (1.5), we obtain for C-values with an 

absolute magnitude equal to unity (such c-values correspond to the contour 

of the slit) 
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2p. (u + iv) = “‘s (C) - (0 v = %+ Iln [$J (C)I. (1.16) 

For r but slightly differing from b, i.e. for 5 determined by the re- 
lation 5 = eie, where 6 is a small quantity, we find 

x 

ze * g (1 cos A) sin2 h dh I 2W = 
C---T -- 

2nr 1 - cos a f s 
g (I ‘; “‘,t;; Ad). 

- 
+ O (ea> 

0 0 

In so far as the quantity In [ (1 - eih I/( 1 - eVix) ! is purely imagin-, 

ary, we obtain 

v _ 1x(x+ I)% g(Irosh)sirPhdh - 
4w s 1 - cos A + 0 (f13) 

0 

(1.17) 

In the case of small 8 we have z’ = Z(1 - l/2 8*) by virtue of (1.31, 

so that dx’/dO = dx/d@= - 10, and we find in the vicinity of the right- 

hand end of the slit 

x 
&I dv d8 %fl -= 

p g (1 cos X) sin2 h dh 

dz 
--=-- 
de dz +e f 1 - CO8 h + WJI (1.18) 

0 

'Jlus, a smooth connection of the opposite edges at the right-hand end, 
corresponding to 8 = 0, takes place only if cohdition (1.121, or, what is 

the same, if condition (1.13) is fulfilled, and this is what we intended 

to prove. In an exactly similar way we can prove that the condition of 
smooth connection of the opposite edges of the slit at the left-hand end 
1c = a of the slit is identical with condition (1.141. 

2. General investigation of a rectilinear equilibrium crack 
in an infinite plane plate. Consider an infinite plane plate acted 

upon by a tensile loading, symmetrical with respect to some straight line, 

the axis of symnetry (Fig. 2). If we disregard the elements of accident, 

then the plate must split along the axis of symnetry. Assume that a finite 

loading is applied to the plate on each side of the axis of symmetry, then 

the result of the process indicated is a rectilinear slit, which reaches 

some definite dimensions, the coordinates of the crack ends being x = a 

and x z: b; the crack itself remains invariable, if the loading remains 

constant. 

7he state of stress in a plate with a crack can be conveniently re- 
presented as a sum of two states of stress, one of which corresponds to 
the infinite plate, without a crack, under the given tensile loading, 
while the other corresponds to a plate with a crack, over the surface of 
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which shear stress resultants and cohesive forces are acting. In the re- 

sulting state of stress the inner part of the crack is free of stress, 

while cohesive forces are acting in the end region; therefore, the in- 

tensity of the compressive stress resultants, responsible for the de- 

struction of the plate, of the second state of stress equals in magnitude 

and is opposite in direction to that of the tensile stresses of the first 

state along the axis of synmetry. For the first state the displacements 

of the points of the axis of symmetry are zero, therefore these displace- 

ments are fully determined by the second state of stress. The latter 

corresponds to the conditions stated in the preceding section, the dis- 

tribution of the stresses g(x) being determined by 

where p(x) is the intensity of the normal tensile stresses at the axis of 

synmetxy for the first state of stress, while G(x) is the intensity of 

the cohesive forces and d is the width of the end region*. 

In consequence of our hypothesis of smooth connection of opposite edges 

of the crack at its ends (third hypothesis of our system, or the hypothesis 

of Khristianovich) the conditions 

(2.2) 

must be fulfilled. 

Take, for example, the first of conditions (2.2), the condition which 

ensures appearance of finite stresses and smooth connection at the end 

x = b of the crack and substitute into it expression (2.1) for the dis- 
tribution of the stresses g(x). We find 

Fig. 2. 
b-d 

* The function p(r) can be calculated in an elementary way for a given 

load; therefore it can be considered as given. 
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Consider the second and the third integrals. kcording to the first 

hypothesis d << b, so that we can assume 

Passing to the variable s = b - x, measured from the end x = b of the 

crack and replacing G(x) by F(s), we obtain 

Ike integral of the right-hand member of (2.4) represents, by virtue 

of the second hypothesis, the one concerning independence of distribution 

of stresses and displacements in the end region, the universal character- 

istic coefficient of the material, introduced in [ll, namely the cohesion 

modulus K. 

Thus we have 

I, = j?zK (2.5) 

Analogously we find that 

Since 

we find 

where O(d/l) denotes a quantity of the order of magnitude of d/l; on the 

basis of the first hypothesis the integral I, can be disregarded compared 

with the integral I,. Correspondingly, the first of relations (2.2) gives 

btireiy analogously, the second of the relations (2.2) gives 

(2:7) 

'(2.8) 
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Fqations (2.7) and (2.8) determine the unknown coordinates of the 

ends of the crack. In particular, if the applied load is symnetrical with 

respect to x = 0, so that the crack is also symmetrical with respect to 

x = 0, i.e. b = - a = 1, then conditions (2.7) and (2.8) become equivalent 

and assume the form 

(2.9) 

3. Examples. Distribution of displacements over the surface 

of the crack. 1. Assume that the crack arises under the action of a 

constant pressure p0 applied along a slit of length 21,. ‘Ihe relation 

(2.9) then gives 

Hence 

(3.1) 

(3.2) 

Figure 3 represents graphically the relation (3.2). The .graph shows 

that equation (3.2) has no solution, if 

K I5 
PO< z,=po- 

0 

This means that no open cracks can arise at so small values of pO. Each 
p. > p. * corresponds to a uniquely determined size of the crack; of course, 
the size of the crack increases with the increase of po. 

2. Assume that the crack is produced by concentrated forces. This case 

arises if in the preceding exarrple p. tends toward infinity, while I, is 

at the same time decreasing in such a way that the product 2p0 E, remains 
constant and equal to P, where P is the amount of the concentrated force. 

In this case we have 

It is not difficult to derive this result, with an accuracy to a con- 
stant factor, from considerations of dimensional analysis, making use of 
the so-called U-theorem [ 61. 

3. Assume now that the crack is produced by two concentrated forces of 

equal magnitude and opposite direction, whose points of application are 

situated at a distance 2l from each other along the comnon line of action 
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of these forces. We assume that for reasons of symnetry the crack will be 

perpendicular to the straight line joining the points of application of 
the forces and symmetrical with respect to it. Sumnation of the known 

fundamental solutions of the theory of elasticity [ ‘71 gives 

(3.4) 

where x is the coordinate measured from the 

intersection point of the crack with the line 
of action of the forces along the crack. Sub- 

stituting this expression 

obtain 

s If P (x) 
I -1 

into (2.91, we 

dx I 

i, v’ I-x - - 
x2 + L2 1-f-X 

r-7 *,Ip. +PLs(l+v) E, dx J,,,‘;+-==~,.+~ 
f - 71 

Fig. 3, 
-Ll (%a + me 

Evaluating the integrals, we find 

I 
I 

It is convenient to transform this relation 
to 

Figure 4 gives a graphical representation of 
the function (3.6) for the case v = 0.5. We see 

that the two roots of equation (3.6), i.e. two values of the crack length 

I, correspond to each value of P. It is, however, evident that, starting 

from the minimum point of the curve, no physical meaning can be assigned 
to values which correspond to the right-hand branch of that curve, because 
the size of the crack increases and the force decreases, so that the 

equilibrium states corresponding to this branch are unstable. Equation 

(3.6) has no solution for 



1018 G. I. Barenblatt 

This means that for any L there is a corresponding critical value of the 

applied force, so that no equilibrium crack is possible at values of the 

applied force which are smaller than the critical value. 

The results thus obtained are qualitatively identical with the results 

derived in [ 11 for the analogous cases of axisymnetrical equilibrium 
cracks. 

4. It has been shown above that the function $(c), by means of which 

the displacements are expressible, has the form (we confine ourselves to 

the symmetrical case for reasons of simplicity) 

==I 

p (I cos A) sin ‘h In e$ - eyih dA 

0 i -e 

A, 

Is =& G(Zcosh)sinhIn 
s 

,iO _ eih 

0 
,i0 _ ,-ih dA 

I 

G (2 cos A) sin h In 

x--l, 

I, - J? - Is (3.7) 

jh, = J/F) 

(3.8) 

Consider a point at the surface of the crack at such a distance from 

the ends of the latter which is large as compared with the width d of the 

end region; thus 8 >> d d/l and rr - 0 >> d d/l. For such 8 and h we have 
in the intervals 0 < X < \/2d/l, n - \/ 2d/l < h < R 

In ( 
ei0 _ ,iX 

= In 
/ $I -l-i>. 

,iB _ e-i?. 
! i 

=_ 
ei0 1 ( 

=In I-iih/(e@-1) 

--i+ih 1 + ih / (2’ - 1) ) 
-2- (3.9) 
et0 - 1 

Substituting this for example, into the expression for I,, we obtain 

2 
G (1 cos h) h2dh 1 

= 
e” - 1 s x fr(e'e - 1)1_, 

G(z)l/l--2dz= 

0 

d 

1 = 
x v/L(eie s ’ (‘) s ds 

-q. I/s 
(3.10) 

which shows that the absolute value of I2 is of an order of magnitude not 

higher than Kd/d I. 'I% e same holds true of the integral I,. ‘Ihe absolute 

value of I1 is by virtue of (2.9) of the order of magnitude of Kd 1. So 

we see that both [I, 1 and 1 I, 1 are small compared with 1 I, 1.1, determines, 

however, such displacements of the surface of the crack, which correspond 
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to its size &temi.ned by (2.91, but derived without taking into account 
the cohesive forces, while the quantities I, and I, determine the part of 
the displacements which is produced by the cohesive forces. 

So we see that for points sufficiently far away from the ends of the 
crack the displacements produced by cohesive forces are, in analogy with 
the axisynmetrical case, small compared with those produced by the basic 
applied load, The displacements are essentially determined by the cohesive 
forces only in the vicinity of the ends of the crack; the latter circum- 
stance explains the smooth connection of the opposite edges of the crack 
at the ends of the latter. 

4. Problem of driving 8 wedge into a plate. 1. The problem of 
driving a wedge into a plate is formulated in the following manner* 
(Fig. 5). A rigid wedge of constant thickness 2h is driven into a plane 
plate of brittle material, whose modulus of elasticity, Poisson’s ratio 
and modulus of cohesion are E, u and K, respectively. The plate is assumed 
to be infinite, in other words, the influence of the boundary line is 
assumed to be negligible; in correspondence herewith the wedge is assumed 
to be semi-infinite. A slit of length L is formed in front of the wedge. 
It is required to determine the length L, as well as the stresses and de- 
formations in the plate. 

Tt follows from the preceding considerations that the size of the end 
region of any crack is of the order of magnitude of K2/E2; assume that h 

is large as compared with the size of the end region; then the length L 
of the formed crack is large as compared with h, and the problem can be 
linearized by transferring the boundary conditions from the surface of 
the crack to the axis C$ (the origin of coordinates is placed, for reasons 
of convenience, at the point of joining of the edges of the crack). A 
similarly conceived statement of the problem is encountered in the study 
of deflection of a smoothly lowered roof into a coal mine. ‘Ihe solution 
of the latter problem was given in [ 31 , where the cohesive forces of the 
material are not taken into consideration. ‘Ihe cohesive forces are, how- 
ever, of primary importance in the problem considered in the present paper, 
since other compressing factors of the type of rock pressure do not occur 
in our present problem. We shall see in the following that the necessity 
of taking the cohesive forces into account introduces into our present 
problem several particular features. 

If the frictional forces on the surface of the wedge are disregarded, 
then the boundary conditions along the cut 0 < y < m have for the problem 

l The problem is visualized by the case of an axe driven into a log 
without splitting it entirely. 
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under consideration the form 

O<y<d, s, 7; 0, X, = G (XT) (4.1) 

d<yGL s, = 0, x, = 0 (4.2) 
IX 

L < y < 00, x, = 0, 
Fig. 5. 

u {x ‘i- 0, y) = h, u(z-0, y)==--12 (4.3) 

where d is the width of the end region, Xx, Y , 
the stress tensor, C(x) represents the distrl 7!i 

Xy are the components of 

ution of the cohesive forces 

in the end region and U, u are the displacement components along the x- 

and y-axes, respectively. 

The problem with boundary conditions (4.1) to (4.3) is obviously a 

mixed one. Introducing the compressive stress resultants, acting on the 

faces of the wedge, and putting Xx = - f(y), we replace the condition 

(4.3) by a condition of the first kind 

L<y<=J, x, = 0, Xx = ---f(Y) (4.4) 

and the problem with boundary conditions (4.11, (4.21, (4.4) becomes a 

problem of the first kind. 'Ihe function f(y) is, however, unknown before- 

hand; to obtain this function we have to construct a singular integral 

equation and to solve it. 

2. We use the method of ~~s~elishvili [ 41 for the solution of the 

elastic problem with boundary conditions (4.1), (4.21, (4.4). Let us start 

with the relations 

X,+Y,=4Re{@(f)) 

Y, - x, + 2ix, = 2 (3 CD’ (C) -I- ‘fi‘ (Cl) 

2t” (u + iv) = “p (C) - 

in which 

s#j-~~, x=3--v 

m(i)=-&J $$, Y(C) = $D'(C), F(o)= X,(o)0 

--W 

+(C) = ;i w'(C) y CC) dt; 

0 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Acre /,A is the shear modulus of the medium, while v is Poisson's ratio; 

the function 

z = it2 = 03 (Q (4.9) 
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effects the mapping of the physical plane z = x + LY with a cut along the 

positive imaginary semi-axis on the lower semi-plane of the parametric 

variable 5. 

Using (4.6) and (4.8) we find 

Y,‘- x, -t_ zix, = @y (p - p”) (4.10) 

such that for real and purely imaginary 6, corresponding to the crack and 

its continuation, we again obtain relations (1.7) and (1.8). Furthermore, 

using relations (4.7) and f4.8), we have for real and purely imaginary 5, 

i.e. on the crack itself and its continuation, 

(4.11) 

Thus, for the determination of the stresses and displacements at the 

crack itself and its continuation, it is sufficient to know the function 

<i(c), and this means to know the function Q (6) as well, which is connected 

with the function r+(c) in a very simple manner. 

According to boundary conditions (4.1), (4.21, (4.4) and relation 

(4.8) we have 

According to the third hypothesis, the hypothesis of Khristianovich, 
the stress must be finite at the end of the crack, i.e. for c = 0. It 

follows that Q(O) must be finite, so that #'CO) must equal zero. This, 

together with (4.12), gives 

-I’t fi 
1 
- 1 f(a”)da +; 7 f(a2)da -22 \ G (a”) da = 
7c 15 

--a) a -4% 
72 

=$T f(a2)da-+ \ G(aa)da = 0 

a 0 

It is, however, evident that 

where K is the cohesion modulus of the material. So we have the condition 

for obtaining finite stresses at the end of the crack in the form 
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co 

c . f(a”)do = +K (4.13) 

or finally in the form 

It can be shown that the same condition 

smooth connection of the opposite edges of 

latter. 

Integration of (4.12) yields 

(4.14) 

(4.11) is the condition for 

the crack at the end of the 

3. Formula (4.11) gives 

u = %GRe {cp(C)} = 4 ('Fv2) Re {p (C)1 (4.15) 

We shall now show that in the case under consideration the distribu- 

tion of the displacements not in the imnediate vicinity of the end of 

the crack, i.e. at such points of the surface of the latter whose dis- 

tance from the end of the crack is large compared with the size of the 

end region, is again independent of the cohesive forces. If a point of 

the crack surface is not in imnediate vicinity of the end of the crack, 

then y>> d, so that the value of 5 corresponding to this point is large 
in magnitude compared with \/ d. Under these conditions 

'Ihe value of the function +(r) not in the imnediate vicinity of the 

end of the crack is of the order of magnitude of Eh. It is, however, 

evident that Eh>> K\/d, since according-to the preceding discussion E/K 

is of the order of magnitude of\/ d and h >> d. Consequently, the second 

integral of the right-hand member of (4.14) (this is the integral which 

determines the dependence between the displacements and the cohesive 

forces at points not in the imnediate vicinity of the end of the crack, 

i.e. at points whose distances are of the order of magnitude of several 

d's from the end of the crack) is small and can be neglected. 'Ihis 

applies in particular to all points of contact between the rigid wedge 
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and the wedged plate. For such points we have 

(4.17) 

where the plus or minus sign is to be used depending on whether 6 is posi- 

tive or negative, i.e. whether < corresponds to the lower or upper edge 

of the cut. 

In complete analogy with [ 31, the following result can be derived: in 

order to obtain a displacement of absolute value equal to h for y + 00, 

the asymptotic equation 

j(y) = E-k 
2x (1 -v”) y + 0 W’) (4.18) 

must be fulfilled for y + 00. 

Furthermore, differentiating (4.17) with respect to 5 we obtain a 

singular integral equation for f(y) of the form 

which can be written also in the form 

s f (02) a da 

a-_t = 
0 

(4.19 j 

'Ihe integral equation (4.20), taken together with condition (4.18), 

is equivalent to the integral equation (4.17). Substituting 

1 
a=-.- 

?.’ c = $., P(7) = $-1(-g) 
into (4.20), we obtain 

+A 

s 
-A 

(4.21) 

Mikhlin has shown in connection with another problem [ 81 that the 

solution of (4.21) is of the form 

p (E) = A [ ;- - py 

where A is an arbitrary constant; so we find 

If y + 00, then relation (4.23) leads to 

f(y) = + $- 0 (y-2) (4.24) 

Canpare this asymptotic representation with that given in (4.18); the 

latter is the condition for the fulfilment of the requirement that the 

(4.22) 

(4.23) 
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displacement have an absolute value equal to h at infinity. The comparison 

leads to 

A@= Eh 
2x (1 - 9) 

(4.25) 

‘Ihe stress distribution (4.25) must also fulfil the condition that the 
stress be finite at the end of the crack, see (4.141, whence 

so that 

A=: (4.27) 

From (4.25) and .(4.27) we obtain the expression for the length L of 

the slit 

L= EW 

4 (1 - v2)2 Iv (4.28) 

‘lhus, knowing the function f(y), we can determine the functions c$(<> 

and Cp ([I from (4.12) and (4.lh), after which we can obtain all compo- 

nents of stress and displacement from relations (4.5) to (4.7). 

We believe that formula (4.28) can be used as a basis for one of the 
convenient ways of determining the cohesion modulus K. It is sufficient 

to this end to drive into a plate of the material under examination a 

wedge of constant width 2h and made of a material essentially harder than 

that of the plate (e.g. a steel wedge can be used for determining the 
cohesion modulus of plexiglass*). ‘lhe wedge must be driven so far as to 

make the distance L between the end of the wedge and the end of the crack 
in front of the wedge constant, showing that the influence of the bound- 

aries of the plate is inessential. This length L must be measured. Know- 

ing Young’s modulus and Pois~son’s ratio of the material under consider- 

ation, we can determine its cohesion modulus K by means of formula (4.28). 

A preliminary experiment of this kind was carried out for the case of 

plexiglass by Maraev in the laboratory of Geiman**. A wedge made of a 

plane steel spring of thickness 2h = 0.034 an was driven into a plate of 
plexiglass. A nearly rectilinear crack arose of length L = 2 cm. Assuming 

that Young’s modulus for plexiglass equals to E = 25,000 kg/cm’, while 

* Trade mark for cast acrylic resin thermoplastic sheets and moulding 

powder. 

** The author wishes to express his gratitude to Geiman and Maraev. 
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Poisson's ratio is v = 0.25, we obtain for the cohesion modulus the value 

K= fib _~I60 kg/cm2 
2(1--2)1/L 

A cohesion modulus of approximately 100 kg/cm3'2 was obtained for an- 

other sample of plexiglass. 'lhe cohesion modulus K is of the order of 

magnitude of Edd, where d characterizes the size of the end region; it 

follows that d is of the order of 1 p (10 -4cm), i.e. the size of the end 

region is small as compared with the entire length of the crack, but 

large in comparison with interatomic distances (10S8cm). 

We again emphasize that the experiment just mentioned was one of pre- 

liminary nature. A careful experimental verification of the concepts de- 

veloped in [l] , as well as in the present paper, would be very desirable. 

5. Remark on possibilities of taking into account the co- 
hesive forces and the influence of the boundaries of the solid 
on the development of cracks. 1. It was shown above that the cohesive 
forces are substantially influencing only the size of the crack and the 

distribution of stresses and displacements in the imnediate vicinity of 

its ends. 'lhus, having determined the dimensions of the crack, it is 

possible to treat the problem as a problem of the theory of elasticity 

for a solid with cracks, disregarding the cohesive forces. With this pro- 

cedure we will arrive at stresses and displacements, particularly at dis- 

placements of points of the surface of the crack, which nearly equal, 

everywhere except the vicinity of the ends of cracks, the corresponding 

values obtained in calculations which take cohesive forces into account. 

Consider for example an isolated rectilinear crack in an infinite 

solid. If the cohesive forces are disregarded, then according to the 

foregoing the stress components Xx and Yy in the vicinity of the end 

II = b approach infinity according to the law 

x,=x,= * 
nV;!(z-b)1 

z=+(b--a) (5.1) 

a 

where the points indicate quantities of higher order of smallness. By 

virtue of (2.8), expression (5.1) assumes the form 

x,=Yy= LK, 
7t)G. 

$=x-b 

An analogous relation holds true in the vicinity of n = a. This result 
is of very general significance in the following sense. 'lhe theory of 

elasticity permits to determine the state of stress for any position of 
the crack ends and for any given loading, if the cohesive forces are dis- 

regarded; the stresses near the ends tend toward infinity according to 
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the law A/ds, where s is the distance from the end of crack and A is a 

constant, in general varying for various ends, and depending on the posi- 

tion of the latter. Vie can state as a general rule: the ends of a crack are 
determined from the condition that the stresses in their vicinity, com- 
puted without taking cohesive forces into consideration, tend to infinity 
according to the law 

(5.3) 

This rule permits in general to exclude from the consideration the 

cohesive forces as such. 

2. We illustrate the procedure of taking the cohesive forces into 
account indicated above by means of a problem, which is also of interest 

by itself, from the point of view of determining the influence of the 

boundaries of a solid on the development of cracks. 

Assume that a crack is produced in an infinite strip under the action 

of forces P, of equal magnitude and opposite direction, applied to the 

surface of the crack. The width of the strip is 2L, the forces are acting 

along the center line of the strip (Fig. 6). 

Fig. 6. 

This problem is solved by means of the method of successive approxima- 

tions developed by Mikhlin [ o] and Sherman [ 101 . It is convenient to take 

as a first approximation the stress field in the strip 6 L < x 6 L, 
- ~0 < y < m ) of the infinite solid, represented by the exterior of the 

periodic system of cracks situated along the x-axis, with centers at points 
X= t2nL (?l= an integer). The loadings which produce the cracks are the 
sane as for the strip under consideration. ohly the shear stresses vanish 
along the lines r = + L; the normal stresses do not vanish there. To com- 

pute the second approximation, we have to consider the problem of a con- 
tinuous strip under compression by boundary stresses; these stresses are 
of magnitude equal to that of, and opposite in direction to, the normal 
stresses obtained along the boundaries in the first approximation. In this 
procedure some normal stresses will arise along the x-axis; for the elimin- 
ation of these stresses and the derivation of the third approximation, it 
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is again necessary to solve some periodical problem, and so forth. It has 

been shown, however, by Irwin [ 111, that the normal stresses along the 

boundaries of the strip x = f L are of comparatively small influence on 

the propagation of cracks normal to the boundaries, therefore, we confine 

ourselves to the first approximation. 

Using the results obtained by Irwin [ 111 , we can show that for the 

stresses along the x-axis we obtain, disregarding cohesive forces, in the 

first approximation 

1 xx = ‘, = 2, sin (xz / 2L) 
Psin~[sin2i~)-sin2(~)]-“~, X, = 0 (5.4) 

In the vicinity of the points x = f (2 + s ), where s is a small guan- 

tity, we obviously have 

Comparing (5.31 

x, = Y, = 
1 P 

V/27cL sin (n1/ L) VB 

and (5.5) with each other we find 

I/hL sin'(izl / L) = + 

L . xl Pa 

Or 
RsinL = 2~2 

(5.5) 

(5.6) 

In the case of 1 <<L we again obtain formula (3.4) for the length of 

the crack in an infinite plate. ‘lhe function (5.6) is represented graphic- 

ally in Fig. 7 ( curve II; curve I corresponds to the transformed formula 
(3.31). We see that in contrast to curve I, curve 11 has an unstable part 

Fig. 7. 

(shown by dotted line), along which the force necessary to keep the crack 
in equilibrium condition is decreasing, while the length of the crack in- 
creases. In other words, after the load has reached its maximum value 

(5.7) 

even the smallest load increase leads to a sudden widening of the crack 

to an amount equal to the width of the strip and to a destruction of the 
latter. 
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Re note that the situation becomes more complicated if the forces are 

applied not at points of the surface of the crack, but at sOme distance 

from each other alone the center line of the strip. Namely, if the dis- 

tance of the points of application of the forces from each other is 

smaller than a certain critical value, then a crack is in general not 
formed until the force has reached a certain magnitude. As soon as the 

force reaches this magnitude, a crack of a certain finite size develops; 

on further increasing the force, the crack gradually increases until a 

certain possible maximum load is reached. Even the slightest increase of 

the latter amount causes sudden destruction of the strip. 

If the distance of the points of application of the forces is larger 

than the critical distance, then no crack will develop in general, until 

the force has reached a certain definite value. ?Ls soon as the force 

reaches this limiting value, the strip is suddenly torn; no stable equi- 

libriwn cracks are possible in this case. 
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